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Monte Carle simulation of statistical systems represents an ancient tool
of the condensed matter physicist. One stores in a computer memory the numerical
degrees of freedom of a thermodynamical model. Pseudo-random changes, weighted by
Boltzmann's factor, then mimic thermal evolution and fluctuation. The physicist
thus performs experiments on "virtual" cryétals with a precisely known and freely
chosen Hamiltonian. By isolating various features of the dynamics, one hopes to
gain insight into such phenomena as phase transitions.

Quite recently, particle theorists have taken this technique over to relativistic
quantum field theory and, in particular, to the study of quark confinement in four
dimensional gauge theories. Using an analogy to be discussed below, we have been
studying four dimensional space-time crystals where the degrees of freedom are gauge
fields. These "experiments" have yielded strong numerical evidence that a non-Abelian
gauge theory of the nuclear interactions can simultaneously display the phenomena
of {1) asymptotic freedom, i.e., weak quark interactions at short distances, and
(2) imprisonment of quarks into the physical hadronms.

Confinement by gauge fields in four dimensions can only be a non-pertur-
bative phenomenon. If quarks experience.the celebrated linear potential at
long distances, then a straightforward renormalization group argument shows
an essential singularity in the coefficient of this linear potential when
regarded as a function of the gauge coupling constant. Thus quark imprisonment
cannot be studied in-the conventional Feynman expansion.

The best current evidence for confinement comes from Wilson's form;lation
of the gauge theory on a 1attice.1 The primary virtue of the lattice is to provide
a non-perturbative, short wavelength cutoff at the lattice spacing. Unlike more
conventional procedures for removing divergences, the lattice preseription is
applied at the outset, and the theory is well defined before any approximation
scheme is attempted. However, it should be remembered that this is just a mathe-
matical trick, and a continuum limit must be taken at the end of any calculation

of a physical number.
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Once formulated on a lattice, the gauge theory becomes a statistical
mechanics problem. In this analogy, temperature corresponds to the square of
the field theoretical coupling constant. In his original paper, Wilson
studied a high temperature expansion and found that confinement arose naturally.
This expansion was in terms of quarks at the ends of flux strings which carry
a finite emergy per unit length. This gives directly an interquark potential
which grows linearly with separation,

For particle physics we are not directly interested in the strong coupling
regime, but rather in the continuum limit. From renormalization group analysis
one derives the phenomenon of asymptotic freedom, whereby the effective coupling

constant of a non-Abelian gauge theory decreases logarithmically as the scale

of measurement goes to zero.? The coupling constant appearing in the Wilson
eéxpansion represents the bare coupling at the scale of the lattice spacing.
Asymptotic freedom thus indicates that this coupling should go to zero for a

continuum limit, forcing us to leave the strong coupling domain.

In the statistical mechanical analog, we know there is confinement at high
- "temperature", but we need low temperature properties. Many statistical systens
undergo phase transitions as the temperature is varied, and distinct phases may
have qualitatively different bulk Properties (i.e., ice vs. water). A demon-
stration of confinement would be greatly simplified if four dimensional non-
Abelian gauge theories have no phase transitions separating strong from weak
coupling. For electrodynamics a different situation énsues. Here Wilson's expansion
also gives confinement at strong coupling, but we know that photons are massless
and electrons unconfined. The entire validity of the Wilson apprcach hinges on
the appearance of a deconfining phase transition in U(l) lattice gauge theory.
Such a transition has been seen in Monte Carlo simulations and its existence
proved rigorously.3’%
What has enabled us to use statistical mechanical methods to study gauge
theories is the Feynman path integral formulation of duantum mechanics. Indeed,

a Feynman path integral is formally nothing but a partition function for an
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equivalent statistical system. In our Monte Carlo approach we are atﬁempting

to numerically evaluate such integrals using established statistical methods.

A path integral is highly multidimensional. For example, on a 10" site
lattice (typical of later discussion) the integral for SU(2) lattice gauge
theory with three four-vector potentials on each site has 1.2 x 105 dimensions.
This precludes conventional integration routines but strongly suggests a
statistical treatment. A Monte Carlo procedure generates a sequence of
field configurations by random changes in the elements of this sequence. The
algorithm is constructed in such a manner that ultimately the probability of
any particular configuration appearing in this segquence is proportional to
the Boltzmann weighting. In the field theory this weighting is the exponential
of the action for that configuration. Thus we are essentially bringing our
lattices into “thermal equilibfium" with a heat bath at a temperature corres-
ponding to the bare coupling constant.

The procedure, then, reduces to doing "experiments" with "crystals" stored
in a computer memory. These crystals are four dimensional because of the
unification of space and time in a relativistic theory. One advantage of this
method is that the entire lattice is stored. Thus one can reconstruct and
study any desired correlaticn function. Thusfar our systems have been rather
small, up to 10" sites for SU(2) and 6% sites for SU(3). Recent investigations

of a discrete approximation to SU(2) have used a 16% lattice.>

I will now display the results of some simple experiments.3'5 Figure 1

exhibits several runs with the gauge group SU(2)} at a particular coupling
4 '

2
70

worst convergence for SU(2) formulated with Wilson's action. Runs are shown

8 = = 2.3. This value was selected because it represents essentially the

for 4% to 10% site lattices. I have plotted the "average plaquette” which is
just the internal energy of the system or the expectation value of the gauge
field strength squared. This is plotted agains the number of Monte Carlo sweeps

performed con the lattice. For each gize lattice, two different initial con-
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figurations were taken, one totally ordered with vanishing vector potential
and the other with totally random values for the fields. Thus we are approaching
equilibrium from opposite extremes, zero and infinite temperature. Agreement
of these two runs is a test of equilibrium. Note that for all lattices
convergence is essentially complete after only 20~30 iterations. Thermal
fluctuation are apparent on the smallest systems, but they are relatively
small on the 10% site crystal.

Figure 2 shows the evolution of the internal energy from an ordered
start and at several values of coupling. Note that convergence gets extremely
good both at strong and weak coupling. Thus this technique is tied to neither
regime and interpolates nicely between both.

The situation can be much worse if a Phase transition is nearby. Figure 32
shows a Monte Carlo run from an ordered start for a Z2 gauge theory.7 This is
a2 toy model where each component of the gauge potential can take on only two
values. This system is a useful theoretical laboratory because duality arguments
indicate a phase transition at a known value of coupling.8 In this figure we
are heating the system through this phase transition. Note that this takes
several hundred iterations and on the way there is a tendency to be hung up in
a metastable phase, 'Figure 4 shows runs with ordered and disordered starts
exactly at the critical temperature. Note that the points do not converge
and the system appears to have two distinct stable phases. This is evidence
for a first order phase transition in this model.

In Fig. 5 1 sﬁow rapid thermal cycles on SU(2) gauge theory in 4 and
5 space-time dimensions and U(1) gauge theory in 4 dimensions. Each point
was obtained by heating or cooling the system for on the order of twenty
iterations. Phasetransitions are to be suspected in regions where the heating
and cooling points do not agree. Such "hysteresis"” phenomena are apparent

for the 5 dimensional SU{2) and the four dimensional U(1l) models. More
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detailed analysis by Lautrup and Nauenberg has indicated that the U(l) tran-

sition is second order. Analysis of my own has_ipdicated a first order tran-
sition in the 5 dimensional SU(2)} case.3 This cléar transition shows the critical
nature of 4 dimensions where no strong structure is seen for SU(2}.

Cnce the lattices are in eguilibrium, anything of interest can, in principle,
be measured. Being interested in a possible linear potential between widely
separated quarks

E -+ Kr , | (1)

I have attempted to extract the coefficient X by inserting sources with quark
guantum numbers into the crystals. Measuring distances in units of the lattice
spacing a, I measure the dimensicnless combination a?x. In Fig. 6 I plotG the
measured values for a?K as a function of 8 = 4/9% for the gauge group SU(2}.
On this graph are two theoretical curves. The first term in Wilson's strong
coupling expansion gives a K approaching - 1ln(3/4} as B'goes to zero. This is
nicely confirmed by the numerical results. The other curve, an exponential
falloff of aK for large 8, is a prediction of asymptotic freedom. Indeed,
this is the essential singularity in g% which prevents a perturbative study of
confinement. If a?K falls faster than the prediction, the interquark potential
is weaker than linear at long distances, whereas if it falls more slowly, the
confining potential is stronger. The consistency of the numerical results with
this theoretical prediction is evidence that a linear potential does indeed
survive a continuum limit.

One physical number arises from this analysis. Although asymptotic
freedom predicts the exponential decrease of a2® as 8 grows, the normalization
is undetermined. This normalization relates the strength of the linear long-
distance potential to the scale of the logarithmic decrease of the effective
gauge coupling at short distances. Using the estimate YK = 400 MeV from Regge

10
phenomenology, L have found  for SU(3)
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Mo = 170 + 50 Mev (2)

Here AMOM is the renormalization scale defined in terms of the three gluon
vertex in Feynman gauge. Phenomenclogical analysis of deep inelastic scat-
tering data can in principle determine AMOM' and the currently most popular
value is about 800 MeV. fThe discrepancy between Eq. (2) and this number may be
due to the neglect of light virtunal quark loops in the Monte Carlo analysis,

or it may come from uncertainties in the experimental analysis._ In any case,
Eg. (2) represents a non-perturbative calculation of a number relating long
and short range properties of an interacting field theory.

In Fig. 7 I return to the gauge group SU(2) and plot two functions,

F and G, as functions of the bare coupling 80 squared.11 Here the func-

tion F is proportional to the square of an effective coupling at twice the
lattice spacing and G corresponds to four lattice spacings. Note that away
from g% = 0 the effective coupling is always larger at the larger scale and
conseguently there is no evidence of any non-trivial renormalization group
fixed point, where F and G would cross. This figure is the strongest evidence
that the SU(2) theory does not possess any conventional second order phase
transition. Whén the physical scale is doubled at weak coupling, asymptotic
freedom tells how the renormalized charge must change. 1In Fig. 8 I show

these functions F and G again, but with G shifted by the predicted amount.

The fact that F and G now fall on top of each other is a numerical verification
of asymptotic'freedom on these rather small lattices.

I have described only a few highlights of recent research. Other inves-
tigations include searches for usefui discrete approximation to continuous
non~-aAbelian groups,s’12 studies of gauge theories at finite physical tempera-
tures,13 analyses in dimensions other than four,lh and use of these numerical

15
techniques on ordinary one degree of freedom gquantum mechanics. Perhaps

the most interesting and frustrating remaining problem is the inclusion of
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guarks in the calculation. Inclusion of scalar fields is no problem but the
generalization to fermi fields is not at all obvious. This is because the
action becomes an operator in Grassman space and the path integral becomes
a sum over fermion loops. Recent courageous attempts at evaluating these

integrals are, as yet, too demanding for computer time to be practical on any
17

but the most modest lattices. I look forward to a technical breakthrough

in this area.
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Figure Captions

Fig. 1. The internal energy for SU(2) gauge theory at B = 2.3 as a function
of number of Monte Carlo iteration.

Fig. 2. The evolution of the average plagquette at several values of §.

Fig. 3. BEvolution of the Z2 gauge theory from an ordered start at B = 0.425.
This system has a phase transifion at B = 1/2 In(1 + v2) = 0.44 ... .

Fig. 4. The evolution of ordered énd disordered states at B = Bc for Z,
gauge theory.

Fig. 5. The average plaquette as a function of B in a thermal cycle on
a) SU(2) in five dimensions; b) SU(2) in four dimensions and
c) s0(2) = U(l) in four dimensions. Crosses, heating: circles,
cooling.

Fig. 6. The combination azK for SU(2) gauge theory as a function of 8.

Fig. 7. Effective couplings at twice and four times the lattice spacing
as a function of the inverse of the bare charge'squared.

Fig. 8. Testing asymptotic freedom.
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